

[student name]
Final Assessment Report Submission

Case: Imperial Memory
06/25/2025

Executive Summary
Provide a brief overview of the case, key findings, the approach taken, and the outcome of the
investigation.

The investigation began by examining the Emperor.vmem memory dump file to uncover
sensitive data. Through analysis, a password was extracted which successfully decrypted the
gift.7z archive. Inside this archive, a file named suspicious.docx was discovered, which
appeared to be encrypted or obfuscated.
Upon further inspection using string analysis tools, it was determined that suspicious.docx
contained embedded archive data. Using the same decompression tool employed on gift.7z,
the .docx file was unzipped, revealing additional files located in a Desktop directory structure.
Among these, a file named secret.txt contained clues suggesting that the final step involved
hashing a specific file to retrieve the intended answer. This pointed toward a multi-stage
analysis process involving memory forensics, archive extraction, file inspection, and hash-
based verification.

Findings and Analysis

1. Memory Dump Review (Emperor.vmem)

The investigation began by scanning the memory dump file Emperor.vmem using:

strings Emperor.vmem | grep "gift.7z"

This identified a reference to a protected archive (gift.7z) and revealed a password in plain text
memory:

G6Vmc$Qd5cpM8ee#Ca=x&A3

This finding confirmed that sensitive data such as passwords can be recovered from memory
using string analysis — a critical insight for forensic and incident response workflows.

2. Archive Extraction Using 7-Zip

The archive gift.7z was extracted using the 7-Zip command-line utility:

7z x gift.7z

With the recovered password, the archive was successfully decrypted, revealing a file named
suspicious.docx. This document was initially assumed to be standard, but further analysis
suggested otherwise.

3. Deep File Inspection

Inspection of suspicious.docx using string extraction tools indicated embedded archive
content. As .docx files are essentially ZIP containers, it was unzipped with 7-Zip using the same
approach:

7z x suspicious.docx

This action exposed an internal directory structure resembling a Desktop environment,
containing multiple hidden files. Among them, secret.txt contained hints pointing toward a
final challenge involving hashing.

Methodology

Tools and Technologies Used

Tools:

1. strings (GNU Binutils)
o Used to extract readable text from the memory dump file (Emperor.vmem).
o Helped identify references to the archive gift.7z and locate the password stored

in memory.
2. grep

o Used alongside strings to filter and quickly locate specific keywords such as
"gift.7z" from a large volume of text output.

3. 7-Zip (7z command-line utility)
o Used to extract the contents of encrypted archives.
o Successfully opened both gift.7z and suspicious.docx, revealing hidden files

and data structures.
4. Text viewers (e.g., cat, less, or graphical editors)

o Used to read the contents of files such as secret.txt, which contained clues or
instructions for the final stage of analysis.

5. Hashing utility (e.g., sha256sum, md5sum)
o While not explicitly performed in the previous steps, hashing was suggested as a

necessary step in analyzing the final file, based on the contents of secret.txt.

Technologies Involved:

1. Memory Forensics
o Leveraged volatile memory analysis to uncover sensitive data like passwords and

file references, demonstrating the risks of storing credentials in plaintext RAM.
2. File Compression & Archiving

o Involved encrypted archive formats like .7z and .docx (a ZIP-based container).
o Showed how data can be hidden or nested within multiple layers to evade

detection.
3. Command-line Interfaces (CLI)

o All major operations were conducted via terminal commands, showcasing the
power and speed of CLI tools in forensic workflows.

4. Data Obfuscation Techniques
o The use of a .docx file to hide additional archives and files reflects common

tactics used in malware and digital forensics challenges to bypass casual
inspection.

Investigation Process

1 These are the files that needed to be investigated

2 This is the Information extracted form Emperor.vmem
strings Emperor.vmem | grep "gift.7z"

3 7zip was used to unzip the gift.7z that needed the password extracted in step 2
7z x gift.7z

4 a suspicious.docx file was placed in the Desktop

5 After inspecting the file it was found using

strings suspicious.docx

that the document had embedded archive data.

6 after using 7z to decompress file, three folders and two files were placed in the Desktop

7 After reading secrets.txt it was implied that everything had a unique serial or code selecting
this file provide a md5 hash by using

 md5sum secrets.txt

Recommendations

Based on the findings from the memory dump and file analysis, it is strongly recommended to
implement stricter controls over sensitive data retention in memory. The fact that a password
used to access an encrypted archive (gift.7z) was found in plain text within the Emperor.vmem
file highlights the critical need for secure memory handling. Developers and system
administrators should ensure that applications handling sensitive information clear memory
buffers immediately after use. Additionally, endpoint protection tools should be configured to
regularly scan volatile memory and flag the presence of plaintext credentials or unauthorized
archive files.

From a security operations perspective, it is advisable to deploy automated tools that
continuously monitor endpoints for suspicious file structures, such as encrypted .docx files
containing hidden data or unusual archive nesting. Endpoint Detection and Response (EDR)
systems, paired with scheduled memory analysis (e.g., via Volatility), can help detect and
investigate threats that use advanced file obfuscation techniques. Lastly, hashing and integrity
checks should be integrated into the incident response process to verify file tampering and to
support forensic timelines during post-incident analysis.

	Executive Summary
	Findings and Analysis
	1. Memory Dump Review (Emperor.vmem)
	2. Archive Extraction Using 7-Zip
	3. Deep File Inspection
	Tools and Technologies Used
	Tools:
	Technologies Involved:

	Investigation Process
	2 This is the Information extracted form Emperor.vmem
	7 After reading secrets.txt it was implied that everything had a unique serial or code selecting this file provide a md5 hash by using
	Recommendations

